
hamster-lib Documentation
Release 0.11.1

Eric Goller

Jul 06, 2016

Contents

1 hamsterlib 3
1.1 Features . 3
1.2 First Steps . 3
1.3 Additional Resources . 4
1.4 News: Version 0.11.0 . 4
1.5 Todo . 4
1.6 Incompatibilities . 4
1.7 Credits . 4

2 Installation 5

3 Usage 7
3.1 Basic Terminology . 7
3.2 Assumptions and Premisses . 8

4 Contributing 9
4.1 Types of Contributions . 9
4.2 Get Started! . 10
4.3 Pull Request Guidelines . 11
4.4 Tips . 11

5 Packaging 13
5.1 About requirements/*.txt . 13

6 Labels and Milestones 15
6.1 Type (#cc317c) . 15
6.2 Topic (#fbca04) . 15
6.3 Status (#159818) . 16
6.4 Other . 16

7 General 17
7.1 Python 2 and 3 compability . 17
7.2 Code-style . 17
7.3 Imports . 18
7.4 Documentation . 18
7.5 Committing and commit messages . 18
7.6 Rebasing . 19
7.7 Pull Requests . 19

i

8 Notes 21
8.1 Not supported legacy ‘functionality’ . 21
8.2 Legacy Storage API notes . 22
8.3 Things we try to improve . 22

9 Credits 25
9.1 Development Lead . 25
9.2 Contributors . 25
9.3 Code taken from ‘legacy hamster’ . 25

10 History 27
10.1 0.11.0 (2016-07-06) . 27
10.2 0.10.0 (2016-04-20) . 27
10.3 0.0.3 (2016-04-08) . 28
10.4 0.0.2 (2016-04-07) . 28
10.5 0.0.1 (2016-04-03) . 28

11 Indices and tables 29

ii

hamster-lib Documentation, Release 0.11.1

Contents:

Contents 1

hamster-lib Documentation, Release 0.11.1

2 Contents

CHAPTER 1

hamsterlib

(A badges refer to master)

A library for common timetracking functionality.

hamster-lib aims to be a replacement for projecthamster backend library. While we are not able to function
as a straight forward drop-in replacement we try very hard to stay as compatible as possible. As a consequence clients
are able to switch to hamster-lib merely by changing some basic calls. Most of the semantics and return values
will be as before.

This itself points to a major architectural shift in the way hamster-lib approaches timetracking. We are firm
believers in do one thing, and do it well. The tried and tested unix toolbox principle. As such we focus on providing
useful backend functionality and helper methods so clients (dbus interfaces, CLIs or graphical UIs) can build upon a
solid and consistent base and focus on their specific requirements.

1.1 Features

• Full python >=2.7 and >=3.4 compatibility

• Full unicode support

• >= 95% test coverage

• Extensive documentation

• Focus on clean, maintainable code.

• Free software: GPL3

• All you need for production, test or dev environments comes out of the box with regular python tools.

1.2 First Steps

• Build dev environment: make develop

• Build the documentation locally: make docs

• Run just the tests: make test

• Run entire test suite including linters and coverage: make test-all

3

hamster-lib Documentation, Release 0.11.1

1.3 Additional Resources

• Documentation by ‘read the docs’

• CI thanks to Travis-CI

• Coverage reports by ‘codecov’

• Dependency monitoring by ‘requires.io’

1.4 News: Version 0.11.0

This is the first release of hamster-lib as official part of projecthamster. As such it includes a lot of internal
adjustments and minor fixes. Besides such housekeeping however, is also offers some genuine new features. You can
now query ActivityManaget.get_all to return all activities, where it previously only returned all for given
category. We also made Category , Activity and Fact hashable, so you can now use them as dict keys or
set elements. For a more detailed overview about what new, please refer to the changelog. Happy tracking; Eric.

1.5 Todo

This early release is mainly meant as a rough proof-of-concept at this stage. It showcases our API as well as our
general design decisions. As such there are a few functionalities/details of the original projecthamster backend
that we wish to allow for, but are not provided so far. These are:

• Tags (We accept them but they are not stored in the backend.)

• Autocomplete related methods

• Trophies (The jury is still out on if and how we want to support those.)

• Migrations from old databases.

1.6 Incompatibilities

Despite our efforts to stay backwards compatible we did deliberately break the way Facts without end dates are
handled. We think allowing for them in any persistent backend creates a data consistency nightmare and so far there
seems no conceivable use case for it, let alone an obvious semantic. What we do allow for is one ongoing fact .
That is a fact that has a start, but no end date. For details, please refer to the documentation.

1.7 Credits

Tools used in rendering this package:

• Cookiecutter

• cookiecutter-pypackage

4 Chapter 1. hamsterlib

http://hamster-lib.docs.projecthamster.org/en/latest
https://travis-ci.org/projecthamster/hamster-lib
https://codecov.io/gh/projecthamster/hamster-lib
https://requires.io/github/projecthamster/hamster-lib/requirements/?branch=master
https://github.com/projecthamster
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

CHAPTER 2

Installation

At the command line:

$ easy_install hamsterlib

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv hamsterlib
$ pip install hamsterlib

5

hamster-lib Documentation, Release 0.11.1

6 Chapter 2. Installation

CHAPTER 3

Usage

To use hamsterlib in a project:

import hamsterlib

The main point of entry is hamsterlib.HamsterControl . Your friendly timetracking controler. All that is
required to initialize it is that you pass it a dict with basic configuration information. Right now, all that is needed
are the following key/value pairs:

'work_dir': ``path``; Where to store any temporary data
'store': 'sqlalchemy'; refer to ``hamsterlib.lib.REGISTERED_BACKENDS``
'db_path': ``sqlalchemy db path``,
'tmpfile_name': filename; under which any 'ongoing fact' will be saved
'fact_min_delta': integer; Amount of seconds under which fact creation will be
→˓prohibited.

hamsterlib.HamsterControl initializes the store and provides a general logger. Besides that
HamsterControl.categories , HamsterControl.activities and HamsterControl.facts are
the main interfaces to communicate with the storage backend.

The second cornerstone are the dedicated classes Category , Activity and Fact which, for convinience, can
be imported right from hamsterlib . In particular Fact.create_from_raw_fact might be of insterest They
provide easy and consistent facilities to create, store and manage data relevant to your timetracking needs. Of particular
interest is hamsterlib.Fact.create_from_raw which allows you to pass a raw_fact string and reciceve
a fully populated Fact instance in return. The class will take care of all the tedious parsing and normalizing of data
present in the raw_fact .

For clients aiming to utilize the new and sanitized backend API a look into hamsterlib.storage may be worth-
wile. These classes describe our baseline API that is to be implemented by any valid backend of ours. Note that some
general methods are provided on this level already, so backend developers don’t have to each time anew. Of cause they
are always free to overload them in order to implement solutions optimized to their concrete backend infrastructure.

Besides this general controler hamsterlib.helpers provides convinience functions that help with normalization
and general intermediate computation clients may have need for.

3.1 Basic Terminology

The following is intended as a rough description of the basic semantics of terminology used as part of this project. For
technical details please refer to the module reference, in particular hamsterlib.objects .

Category What it says on the tin. A user friendly way to group accitities that relate to each other. Their names are
unique.

7

hamster-lib Documentation, Release 0.11.1

Activity ‘What you are doing’. This is a brief and easy to remember describtion of the (you guessed it) ‘activity’
you want to track. An activity can be filed under a category in order to provide some structure or just stay
uncategrized. While one ‘activity name’ can be used with multiple categories it will be considered as a different
thing all together as far as we are concerned. E.g. an activity called ‘meeting’ filed under the ‘private’ category
will be absolutly seperate from an activity named ‘meeting’ filed under ‘bussiness’. Within each category,
activitynames will be unique.

Fact An actually timetracked activity. That is, an entry about ‘what did you do from start to end’. As such it
connects an general Activity with timetracking information as well as additional optional context infos (tags and
description). A fact is usually what you are ultimativly interested in. What shows up in your report and allows
you to see what you did when.

Ongoing fact Legacy hamster allowed for facts without an end to be saved to the database. We do not. However,
to address the common use case that a client may want to start tracking an activity, but does not know its end,
we provide a convinient solution so clients don’t have to implement this each by anew. We provide an API for
creating one and only one persistent ongoing fact. A fact without specified end. This fact is treated seperatly the
others in almost any regard internaly. As far as the client is concerned it is however just a regular fact without
specified end. Fact manager methods relevant to this carry tmp_fact in their name.

This documentation need to be expanded, but hopefully it is enough for now to get you started. For detail please see
the module reference and tests.

3.2 Assumptions and Premisses

As any software, we make assumptions and work on premises. Here we try to make them transparent.

• There can be only one fact any given point in time. We do not support multiple concurrent facts.

8 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
Further details on labels and their respective meaning can be found in the wiki.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/projecthamster/hamster-lib/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

4.1.4 Write Documentation

‘hamster-lib’ could always use more documentation, whether as part of the official ‘hamster-lib’ docs, in docstrings,
or even on the web in blog posts, articles, and such.

9

https://github.com/projecthamster/hamster-lib/wiki/Labels,-and-how-to-use-them
https://github.com/projecthamster/hamster-lib/issues

hamster-lib Documentation, Release 0.11.1

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/projecthamster/hamster-lib/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up hamster-lib for local development.

1. Fork the hamster-lib repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:projecthamster/hamster-lib.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development. It will also take care of installing all packes required for a dev environment:

$ mkvirtualenv hamster-lib
$ cd hamster-lib/
$ make develop
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ make test-all

For your intermediate quick-and-dirty testruns that include just the unittests, run:

$ make test

If you just want to check against a specific python (py27 or py34) version, run:

$ tox -e py27

or:

$ tox -e py34

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

10 Chapter 4. Contributing

https://github.com/projecthamster/hamster-lib/issues

hamster-lib Documentation, Release 0.11.1

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests. Preferably they will not lower the total test coverage of the project.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7 and 3.4. Check Travis and make sure that the tests pass for all
supported Python versions.

4.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_hamster_lib

4.3. Pull Request Guidelines 11

https://travis-ci.org/projecthamster/hamster-lib/builds/142418469

hamster-lib Documentation, Release 0.11.1

12 Chapter 4. Contributing

CHAPTER 5

Packaging

hamsterlib follows the semantic versioning scheme. Each release is packaged and uploaded to pypi. We provide
a compliant setup.py which contains all the meta information relevant to users of hamsterlib . If you stumble
upon any incompatibilities or dependency issue please let us know. If you are interested in packaging hamsterlib
for your preferred distribution or in some other context we would love to hear from you!

5.1 About requirements/*.txt

We do fully follow Donald Stuffts argument that information given setup.py is of fundamentally different nature
than what may be located under requirements.txt (Additional comments can be found in the packaging guide
and with Hynek Schlawack). As far as packaging goes setup.py is authoritative. We provide a set of specific
environments under requirements/* that mainly developers and 3rd parties may find useful. This way we
can easily enable contributers to get a suitable virtualenv running or specify our test environment in one central
location. If for example you wanted to package hamsterlib for debian-stable , it would be mighty convenient
to just provide another requirements.txt with all the relevant dependencies pinned to what your target distro would
provide. Now you can run the entire test suit against a reliable representation of said target system.

13

http://semver.org
https://pypi.python.org/pypi/hamsterlib
http://caremad.io/2013/07/setup-vs-requirement/
http://python-packaging-user-guide.readthedocs.io/requirements/
https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/

hamster-lib Documentation, Release 0.11.1

14 Chapter 5. Packaging

CHAPTER 6

Labels and Milestones

Each issue should have at least one label from the Type and Status section assigned.

6.1 Type (#cc317c)

Enhancement Issues that introduce new functionality. Original post should include the following information:

• Description of desired functionality

• A (prosaic) description of a use case

• Optionally add suggestions/ideas about how to implement the feature. As always, PRs are welcome. :)

Bug Issues about something not working as intended. Original post should include the following information:

• Platform (operating system, architecture)

• Version of package in question

• Steps suitable to reproduce the problem

• Error message/console output

• If you are willing to share: log files

In case of an error within the documentation the above requirements can be omitted.

Duplicate Indicates that the issues topic has been addressed before and all discussion/comments should happen in the
referenced issue instead.

Question Indicates that the issue is less about actual code/functionality but addresses a general (design) question that
needs to be decided upon before an implementation can be considered.

Story Used to track multiple related issues.

6.2 Topic (#fbca04)

Issues without a specific topic assigned deal with general functionality. The main purpose if these labels is to allow
contributors with specific skill sets to find issues fitting them.

UX Issue does not deal with functionality itself but with user interaction.

UI Issue deal with visual representation of functionality.

15

hamster-lib Documentation, Release 0.11.1

Documentation Issue does not require actual coding or even necessarily python knowledge at all but deals with
documenting the project itself. It may be used to indicate improvements to the code’s documentation, in which
case a basic familiarity with the language and code layout is highly desirable. However, it may also be used for
issues dealing with front end user facing documentation that elaborates on how to use the package in a plain
natural language.

Packaging Issues related to project package releases.

Meta Issues related to the general project setup.

6.3 Status (#159818)

Labels that indicate the status of an issue. Their provide a quick and easy answer to whether the issue is actionable or
not.

Decision needed Tickets that need a design decision are blocked for development until a project leader clarifies the
way in which the issue should be approached.

Information needed This label indicates that the issue has not enough information in order to decide on how to go
forward. See the documentation about our triage process for more information.

Help needed Designates issues which seem to require a certain skill currently not available to the core developers.
Such issues are unlikely to be solved unless a contributor with the required skill-set steps forward to help out.
Giving pointers to domain specific resources or best practices may already be enough. This does not necessarily
imply that all the actual coding has to be done by the person providing the desired skill.

Ready The issue has been screened by the core devs and may be worked upon at your leisure.

Blocked This issue can only be addressed once another issue has been resolved. The cause may be an internal issue
or external dependency.

In progress: Issues currently worked on. If you want to join work on it please coordinate with its assignee to achieve
the best possible solution and avoid duplicate work.

Rejected: Issues that are not considered within the general goals of the project. A reference to said previous discus-
sion/issue should be given.

6.4 Other

Labels that did not warrant their own group.

Ready for review Pull Requests that are considered complete. A review by at least one core developer is required
prior to merging it.

Good First Bug This label marks tickets that are easy to get started with. The ticket should be ideal for beginners to
dive into the code base, indicating low-hanging fruits. These tickets generally should fit the following require-
ments:

• No comprehensive knowledge of the entire code base needed.

• No particular 3rd party library familiarity required.

• Most likely does not involve long term effort.

• No elaborate design decisions involved.

16 Chapter 6. Labels and Milestones

http://www.urbandictionary.com/define.php?term=low-hanging%20fruit

CHAPTER 7

General

class compact

• Follow PEP 8 and PEP 257.

• Try to stick to 79 chars. When this is not enough you may use up to 99 chars. This is more tolerable for code
than for documentation.

• Use double quotes for human readable strings and single quotes for all other strings.

• Private functions and methods are prefixed with a single underscore: _method .

7.1 Python 2 and 3 compability

class compact

• Declare encoding in first line: -*-encoding: utf-8 -*-

• Use absolute_import and unicode_literals from the __future__ package.

• Use six.text_type to cast a unicode string under python 2 and 3.

7.2 Code-style

• Readability trumps almost anything. Readable and approachable code carries it’s weight as a lower contribution-
barrier, less bugs and easier debugging. Having a particular clever, aka dense, alternative is rarely warranted.

• Favour multiple small specialized (local) functions/methods over big all-encompassing ones.

• Use well established and maintained high quality 3rd party libraries over own implementations.

• Use expressive variable names. If you have to trade off verbosity and expressiveness, go for the later.

• Assigning variables even if they are used only once can be preferable if expressions become clearer and less
dense.

• Any method / function that is not deliberately considered part of the public API should be considered private.
This is to increase the mental threshold for declaring them public as well as making it easier to the occasional
reader to figure out which parts of the code are relevant to his/her needs and which are internal details.

• Try to minimize use of return statements with a method/function while using exceptions wherever suitable.
While this may not allways improve readability it tends to make debugging easier as it provides one central
breaking point.

17

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

hamster-lib Documentation, Release 0.11.1

• Methods should have the following order: special (__foo__) > public > private (_foo‘).

7.3 Imports

class compact

• Imports should be grouped in the following order:

– standard library imports

– related third party imports

– local application/library specific imports

• You should put a blank line between each group of imports.

• Always order each group of imports by name.

• You can use isort to sort the imports.

• Remove import statements that are no longer used when you change code.

7.4 Documentation

class compact

• Docstrings should be provided for all public and private classes, methods and functions. Simple local functions
may go without. They should elaborate the methods signature and use.

• Use google-style docstrings. Sphinx’s napoleon extension will make turn this into valid rst .

• use block comments to explain implementation

7.5 Committing and commit messages

class compact

• Commit one change/feature at a time (you can use tig to select the changes you want to commit).

• Separate bug fixes from feature changes, bugfixes may need to be backported to the stable branch.

• Maximum line length is 50 characters for the first line and 72 for all following lines.

• The first line is a short summary, no trailing period.

• Leave a blank line between the summary and the body of the commit message.

• Explain what you did and add all relevant information to the commit message.

• If an issue exists for your feature/bug/task add it to the end of the commit message.

• Run the test suite before pushing your changes.

• Never commit passwords, *.pyc files, sqlite database files or pdb calls.

18 Chapter 7. General

https://github.com/timothycrosley/isort
http://www.sphinx-doc.org/en/stable/ext/example_google.html#example-google
http://www.sphinx-doc.org/en/stable/ext/napoleon.html#module-sphinx.ext.napoleon
http://jonas.nitro.dk/tig/

hamster-lib Documentation, Release 0.11.1

7.6 Rebasing

class compact

• try to rebase to keep the commit history linear:

$ git pull --rebase

• If you have uncommitted changes in your working directory use git stash to stash the changes while
rebasing:

$ git stash
$ git pull --rebase
$ git stash pop

• Do not rebase already published changesets!

7.7 Pull Requests

class compact

The title of a pull request should contain a summary of the issue it is related to, as well as the issue id. An example
would look like Advanced report options (#23) . This way, a link between the PR and the issue will be
created.

Every pull request has to be approved by at least one other developer before merging.

7.6. Rebasing 19

hamster-lib Documentation, Release 0.11.1

20 Chapter 7. General

CHAPTER 8

Notes

These notes are just a dumping ground for semanitic information extracted from legacy hamster while dealing with its
codebase that is not documented/obvious. Also, some basic troubleshooting heuristics and ‘lessons learned’ may be
documented here for now.

• Why all this buisiness with search_names , which are lowercase versions of proper names? Is it because
cases insesitive matching was not available? or due to performence considerations?

• It looks like the dbus client assume PKs to be > 0 and uses 0 as marker for failure. Would be great if we can
change that on the frontend instead of working around that.

• Whilst we do support networked/distributed storage acces we do not at all can provide multiple simultanious
connections. Our backend uses the fact that an Object has a PK to decide if it updates or inserts. If any other
“client” has manipulated the data stored under this key between this clients retrieval and its save call, those
changes will simply be overwritten.

• force_flush on SQLAlchemy-factories helped with:

sqlalchemy.exc.IntegrityError: (raised as a result of Query-invoked autoflush; consider using a ses-
sion.no_autoflush block if this flush is occurring prematurely) (sqlite3.IntegrityError) UNIQUE con-
straint failed: categories.name [SQL: ‘INSERT INTO categories (id, name) VALUES (?, ?)’] [pa-
rameters: ((19, ‘vero’), (20, ‘officiis’), (21, ‘aliquid’), (22, ‘vero’), (23, ‘dolorum’))]

after we started using factory-instance fixtures ‘alchemy_category’ vs ‘alchemy_category_factory’

• Integrity Error (SQLAlchemy) If we end up with ‘constraint‘ or ‘Integrety’ erros although we should not
have commited anything to the db, it may be that one of our unsuspicious queries nearby triggered an aut-
oflush/commit. Popular candidates are lookup- and count queries. One way to get around this using instances
of classes not tracked/mapped by SQLAlchemy.

8.1 Not supported legacy ‘functionality’

Not now:

• tags

• search_name

• indexing

• ical export

• autocomplete

• resurrect /temporary mechanic

21

hamster-lib Documentation, Release 0.11.1

• get facts can inverse search_terms

• trophies

• migration from old database aka run_fixtures .

Opted against:

• __solve_overlaps

• __squeeze_in

• __touch_fact)

8.2 Legacy Storage API notes

• get_tag_ids seems to create tags that have been passed if they do not exist * activities flagged as
temporary dont get ressurected (__add_fact).

• seperate storage.__get_activities is dedicated to autocomplete. we summerized its usecase under
the regular one so far. The difference seems to be that autocomplete reasonable needs a way to retrieve all activ-
ity names, irrespective of category association. This should be coverable by adding a categories=False
flag to our default method. Worth noting: considers only non-deleted activities. Activities are returned or-
dered by their corresponding facts start time with the ‘latests’ beeing first. Maybe it is actually cleaner to add a
dedicated method like this once we get to autocomplete.

Dismissed:

• resurrect/temporary for add_fact is about checking for preexisting activities by using
__get_activity_by_name . If True we will consider ‘deleted’ activities and stick this to our new
fact.

– We don’t do temporary facts.

• if an activity is created with temporary=True it will be marked as deleted=True . why not set the
attribute directly? Whats the role of a temporary activity?

– This is only used when creating temporary facts in order to prevent proper activities beeing created for
them. We don’t do temporary facts, so we can ommit this.

8.3 Things we try to improve

• python >=2.7, >=3.4 support

• full unicode support

• full pep8 and 257 complience

• >=95% test coverage

• strict and honest seperation of concerns. We provide just the backend, but that we do proper. * cleaner, more
object oriented pythonic code

• ‘one exit point’ strategy for method return values. Reduce the spagettiness.

• modular architecture.

• focus on solid core functionality and only expand features once existing code meets our standart.

• better project layout including waffle.io, codeship.com and requirements.io

22 Chapter 8. Notes

hamster-lib Documentation, Release 0.11.1

• fully integrated and focused on PyPi distribution. All you need for production, test or dev comes out of the box
with regular python tools.

8.3. Things we try to improve 23

hamster-lib Documentation, Release 0.11.1

24 Chapter 8. Notes

CHAPTER 9

Credits

9.1 Development Lead

• Eric Goller <eric.goller@ninjaduck.solutions>

9.2 Contributors

9.3 Code taken from ‘legacy hamster’

• tbaugis: * parse_time_info from hamster-cli * XMLWriter from hamster

25

mailto:eric.goller@ninjaduck.solutions
https://github.com/tbaugis
https://github.com/projecthamster/hamster/blob/master/src/hamster-cli
https://github.com/projecthamster/hamster/blame/master/src/hamster/reports.py

hamster-lib Documentation, Release 0.11.1

26 Chapter 9. Credits

CHAPTER 10

History

10.1 0.11.0 (2016-07-06)

• Renamed this package to hamster-lib as it now an offical part of projecthamster. It was previously named
and distributed as hamsterlib

• Add documentation checker pep257 to testsuite.

• Fixed docstrings.

• Removed hamster_lib.objects.Fact.serialized_name .

• Improved test factories

• Made hamster_lib.objects.* hashable.

• Provide consistent and improved __repr__ methods for hamster_lib.objects classes.

• FactManager._get_all can now return facts completely*or* partially within the timeframe. As a conse-
quence, we removed FactManager._timeframe_is_free .

• Added a set of helper function to ease common configuration related tasks. In particular they make it easy to
store a given config at its canonical file system location.

• Improved ActivityManager.get_all to enable it to return all activities.

10.2 0.10.0 (2016-04-20)

• Add ical export facilities. Brand new writer using the icalendar library.

• Add xml export facilities.

• Switch to semantic versioning

• Added GPL3 boilerplate

• Provide documentation on packaging and requirements.txt .

• Add support for editorconfig

• Introduce fine grained, storage backend dependent config options.

27

https://github.com/projecthamster
https://pypi.python.org/pypi/hamsterlib/0.1.0
http://semver.org
http://editorconfig.org

hamster-lib Documentation, Release 0.11.1

10.3 0.0.3 (2016-04-08)

• fact managers save method now enforces new fact_min_delta setting.

• Fixed broken packing in setup.py .

• Storage manager methods now use extensive logging.

• Documentation moved to ‘alabaster’ theme and content extended.

• Remove usage of future.builtins.str .

• Adjusted release make target.

10.4 0.0.2 (2016-04-07)

• First release on PyPi

• Improved documentation

• Support for ongoing facts.

• Updated requirements

10.5 0.0.1 (2016-04-03)

• First release on github

28 Chapter 10. History

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

29

hamster-lib Documentation, Release 0.11.1

30 Chapter 11. Indices and tables

Index

C
compact (built-in class), 17–19

31

	hamsterlib
	Features
	First Steps
	Additional Resources
	News: Version 0.11.0
	Todo
	Incompatibilities
	Credits

	Installation
	Usage
	Basic Terminology
	Assumptions and Premisses

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Packaging
	About requirements/*.txt

	Labels and Milestones
	Type (#cc317c)
	Topic (#fbca04)
	Status (#159818)
	Other

	General
	Python 2 and 3 compability
	Code-style
	Imports
	Documentation
	Committing and commit messages
	Rebasing
	Pull Requests

	Notes
	Not supported legacy `functionality'
	Legacy Storage API notes
	Things we try to improve

	Credits
	Development Lead
	Contributors
	Code taken from `legacy hamster'

	History
	0.11.0 (2016-07-06)
	0.10.0 (2016-04-20)
	0.0.3 (2016-04-08)
	0.0.2 (2016-04-07)
	0.0.1 (2016-04-03)

	Indices and tables

