

 Navigation

 	
 index

 	
 next |

 	hamster-lib 0.11.1 documentation

Welcome to hamsterlib’s documentation!

Contents:

	hamsterlib
	Features

	First Steps

	Additional Resources

	News: Version 0.11.0

	Todo

	Incompatibilities

	Credits

	Installation

	Usage
	Basic Terminology

	Assumptions and Premisses

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Packaging
	About requirements/*.txt

	Labels and Milestones
	Type (#cc317c)

	Topic (#fbca04)

	Status (#159818)

	Other

	General
	Python 2 and 3 compability

	Code-style

	Imports

	Documentation

	Committing and commit messages

	Rebasing

	Pull Requests

	Notes
	Not supported legacy ‘functionality’

	Legacy Storage API notes

	Things we try to improve

	Credits
	Development Lead

	Contributors

	Code taken from ‘legacy hamster’

	History
	0.11.0 (2016-07-06)

	0.10.0 (2016-04-20)

	0.0.3 (2016-04-08)

	0.0.2 (2016-04-07)

	0.0.1 (2016-04-03)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

hamsterlib

 [https://travis-ci.org/projecthamster/hamster_lib]
 [https://codecov.io/github/projecthamster/hamster-lib][image: Documentation Status]
 [http://hamster-lib.docs.projecthamster.org/en/latest/][image: Requirements Status]
 [https://requires.io/github/projecthamster/hamster-lib/requirements/?branch=master](A badges refer to master)

A library for common timetracking functionality.

hamster-lib aims to be a replacement for projecthamster backend
library. While we are not able to function as a straight forward drop-in
replacement we try very hard to stay as compatible as possible. As a
consequence clients are able to switch to hamster-lib merely by changing
some basic calls. Most of the semantics and return values will be as before.

This itself points to a major architectural shift in the way hamster-lib
approaches timetracking. We are firm believers in do one thing, and do it
well. The tried and tested unix toolbox principle. As such we focus on
providing useful backend functionality and helper methods so clients (dbus
interfaces, CLIs or graphical UIs) can build upon a solid and consistent base
and focus on their specific requirements.

Features

	Full python >=2.7 and >=3.4 compatibility

	Full unicode support

	>= 95% test coverage

	Extensive documentation

	Focus on clean, maintainable code.

	Free software: GPL3

	All you need for production, test or dev environments comes out of the box
with regular python tools.

First Steps

	Build dev environment: make develop

	Build the documentation locally: make docs

	Run just the tests: make test

	Run entire test suite including linters and coverage: make test-all

Additional Resources

	Documentation by ‘read the docs’ [http://hamster-lib.docs.projecthamster.org/en/latest]

	CI thanks to Travis-CI [https://travis-ci.org/projecthamster/hamster-lib]

	Coverage reports by ‘codecov’ [https://codecov.io/gh/projecthamster/hamster-lib]

	Dependency monitoring by ‘requires.io’ [https://requires.io/github/projecthamster/hamster-lib/requirements/?branch=master]

News: Version 0.11.0

This is the first release of hamster-lib as official part of
projecthamster [https://github.com/projecthamster].
As such it includes a lot of internal adjustments and minor fixes.
Besides such housekeeping however, is also offers some genuine new features.
You can now query ActivityManaget.get_all to return all activities, where
it previously only returned all for given category. We also made
Category, Activity and Fact hashable, so you can now use them as
dict keys or set elements.
For a more detailed overview about what new, please refer to the changelog.
Happy tracking; Eric.

Todo

This early release is mainly meant as a rough proof-of-concept at this stage.
It showcases our API as well as our general design decisions. As such there
are a few functionalities/details of the original projecthamster backend
that we wish to allow for, but are not provided so far. These are:

	Tags (We accept them but they are not stored in the backend.)

	Autocomplete related methods

	Trophies (The jury is still out on if and how we want to support those.)

	Migrations from old databases.

Incompatibilities

Despite our efforts to stay backwards compatible we did deliberately break the
way Facts without end dates are handled. We think allowing for them in any
persistent backend creates a data consistency nightmare and so far there seems
no conceivable use case for it, let alone an obvious semantic. What we do
allow for is one ongoing fact. That is a fact that has a start, but no
end date. For details, please refer to the documentation.

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Installation

At the command line:

$ easy_install hamsterlib

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv hamsterlib
$ pip install hamsterlib

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Usage

To use hamsterlib in a project:

import hamsterlib

The main point of entry is hamsterlib.HamsterControl. Your friendly timetracking
controler. All that is required to initialize it is that you pass it a dict with basic
configuration information. Right now, all that is needed are the following key/value
pairs:

'work_dir': ``path``; Where to store any temporary data
'store': 'sqlalchemy'; refer to ``hamsterlib.lib.REGISTERED_BACKENDS``
'db_path': ``sqlalchemy db path``,
'tmpfile_name': filename; under which any 'ongoing fact' will be saved
'fact_min_delta': integer; Amount of seconds under which fact creation will be prohibited.

hamsterlib.HamsterControl initializes the store and provides a general
logger. Besides that HamsterControl.categories,
HamsterControl.activities and HamsterControl.facts are the main
interfaces to communicate with the storage backend.

The second cornerstone are the dedicated classes Category, Activity and
Fact which, for convinience, can be imported right from hamsterlib. In
particular Fact.create_from_raw_fact might be of insterest They provide
easy and consistent facilities to create, store and manage data relevant to
your timetracking needs. Of particular interest is
hamsterlib.Fact.create_from_raw which allows you to pass a raw_fact
string and reciceve a fully populated Fact instance in return. The class
will take care of all the tedious parsing and normalizing of data present in
the raw_fact.

For clients aiming to utilize the new and sanitized backend API a look into
hamsterlib.storage may be worthwile. These classes describe our baseline
API that is to be implemented by any valid backend of ours. Note that some
general methods are provided on this level already, so backend developers don’t
have to each time anew. Of cause they are always free to overload them in
order to implement solutions optimized to their concrete backend
infrastructure.

Besides this general controler hamsterlib.helpers provides convinience
functions that help with normalization and general intermediate computation
clients may have need for.

Basic Terminology

The following is intended as a rough description of the basic semantics of terminology used
as part of this project. For technical details please refer to the module reference, in
particular hamsterlib.objects.

	Category

	What it says on the tin. A user friendly way to group accitities that
relate to each other. Their names are unique.

	Activity

	‘What you are doing’. This is a brief and easy to remember describtion of
the (you guessed it) ‘activity’ you want to track. An activity can be
filed under a category in order to provide some structure or just stay
uncategrized. While one ‘activity name’ can be used with multiple
categories it will be considered as a different thing all together as far
as we are concerned. E.g. an activity called ‘meeting’ filed under the
‘private’ category will be absolutly seperate from an activity named
‘meeting’ filed under ‘bussiness’. Within each category, activitynames
will be unique.

	Fact

	An actually timetracked activity. That is, an entry about ‘what did you do
from start to end’. As such it connects an general Activity with
timetracking information as well as additional optional context infos (tags
and description). A fact is usually what you are ultimativly interested
in. What shows up in your report and allows you to see what you did when.

	Ongoing fact

	Legacy hamster allowed for facts without an end to be saved to the database.
We do not. However, to address the common use case that a client may want to
start tracking an activity, but does not know its end, we provide a
convinient solution so clients don’t have to implement this each by anew.
We provide an API for creating one and only one persistent ongoing fact. A
fact without specified end. This fact is treated seperatly the others in
almost any regard internaly. As far as the client is concerned it is
however just a regular fact without specified end. Fact manager methods
relevant to this carry tmp_fact in their name.

This documentation need to be expanded, but hopefully it is enough for now to
get you started. For detail please see the module reference and tests.

Assumptions and Premisses

As any software, we make assumptions and work on premises. Here we try to make
them transparent.

	There can be only one fact any given point in time. We do not support
multiple concurrent facts.

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.
Further details on labels and their respective meaning can be found in the
wiki [https://github.com/projecthamster/hamster-lib/wiki/Labels,-and-how-to-use-them].

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/projecthamster/hamster-lib/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

‘hamster-lib’ could always use more documentation, whether as part of the
official ‘hamster-lib’ docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/projecthamster/hamster-lib/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up hamster-lib for local development.

	Fork the hamster-lib repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:projecthamster/hamster-lib.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed,
this is how you set up your fork for local development. It will also take care of
installing all packes required for a dev environment:

$ mkvirtualenv hamster-lib
$ cd hamster-lib/
$ make develop
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests,
including testing other Python versions with tox:

$ make test-all

For your intermediate quick-and-dirty testruns that include just the unittests, run:

$ make test

If you just want to check against a specific python (py27 or py34) version, run:

$ tox -e py27

or:

$ tox -e py34

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests. Preferably they will not lower the total
test coverage of the project.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and 3.4. Check Travis [https://travis-ci.org/projecthamster/hamster-lib/builds/142418469]
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_hamster_lib

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Packaging

hamsterlib follows the semantic versioning [http://semver.org] scheme.
Each release is packaged and uploaded to pypi [https://pypi.python.org/pypi/hamsterlib]. We provide a compliant
setup.py which contains all the meta information relevant to users of
hamsterlib. If you stumble upon any incompatibilities or dependency issue
please let us know. If you are interested in packaging hamsterlib for your
preferred distribution or in some other context we would love to hear from you!

About requirements/*.txt

We do fully follow Donald Stuffts argument [http://caremad.io/2013/07/setup-vs-requirement/] that information given
setup.py is of fundamentally different nature than what may be located
under requirements.txt (Additional comments can be found in the packaging
guide [http://python-packaging-user-guide.readthedocs.io/requirements/]
and with Hynek Schlawack [https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/]).
As far as packaging goes setup.py is authoritative. We provide a set of
specific environments under requirements/* that mainly developers and 3rd
parties may find useful. This way we can easily enable contributers to get a
suitable virtualenv running or specify our test environment in one central
location. If for example you wanted to package hamsterlib for
debian-stable, it would be mighty convenient to just provide another
requirements.txt with all the relevant dependencies pinned to what your target
distro would provide. Now you can run the entire test suit against a reliable
representation of said target system.

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Labels and Milestones

Each issue should have at least one label from the Type and Status
section assigned.

Type (#cc317c)

	Enhancement

	Issues that introduce new functionality. Original post should include the
following information:

	Description of desired functionality

	A (prosaic) description of a use case

	Optionally add suggestions/ideas about how to implement the feature. As
always, PRs are welcome. :)

	Bug

	Issues about something not working as intended. Original post should include
the following information:

	Platform (operating system, architecture)

	Version of package in question

	Steps suitable to reproduce the problem

	Error message/console output

	If you are willing to share: log files

In case of an error within the documentation the above requirements can be
omitted.

	Duplicate

	Indicates that the issues topic has been addressed before and
all discussion/comments should happen in the referenced issue instead.

	Question

	Indicates that the issue is less about actual code/functionality but
addresses a general (design) question that needs to be decided upon before
an implementation can be considered.

	Story

	Used to track multiple related issues.

Topic (#fbca04)

Issues without a specific topic assigned deal with general functionality.
The main purpose if these labels is to allow contributors with specific
skill sets to find issues fitting them.

	UX

	Issue does not deal with functionality itself but with user interaction.

	UI

	Issue deal with visual representation of functionality.

	Documentation

	Issue does not require actual coding or even necessarily python
knowledge at all but deals with documenting the project itself. It may be
used to indicate improvements to the code’s documentation, in which case a
basic familiarity with the language and code layout is highly desirable.
However, it may also be used for issues dealing with front end user facing
documentation that elaborates on how to use the package in a plain natural
language.

	Packaging

	Issues related to project package releases.

	Meta

	Issues related to the general project setup.

Status (#159818)

Labels that indicate the status of an issue. Their provide a quick and easy
answer to whether the issue is actionable or not.

	Decision needed

	Tickets that need a design decision are blocked for development until a
project leader clarifies the way in which the issue should be approached.

	Information needed

	This label indicates that the issue has not enough information in order to
decide on how to go forward. See the documentation about our triage process
for more information.

	Help needed

	Designates issues which seem to require a certain skill currently not
available to the core developers. Such issues are unlikely to be solved
unless a contributor with the required skill-set steps forward to help out.
Giving pointers to domain specific resources or best practices may already
be enough. This does not necessarily imply that all the actual coding has to
be done by the person providing the desired skill.

	Ready

	The issue has been screened by the core devs and may be worked upon at your
leisure.

	Blocked

	This issue can only be addressed once another issue has been resolved. The
cause may be an internal issue or external dependency.

	In progress:

	Issues currently worked on. If you want to join work on it please coordinate
with its assignee to achieve the best possible solution and avoid duplicate
work.

	Rejected:

	Issues that are not considered within the general goals of the project.
A reference to said previous discussion/issue should be given.

Other

Labels that did not warrant their own group.

	Ready for review

	Pull Requests that are considered complete. A review by at least one core
developer is required prior to merging it.

	Good First Bug

	This label marks tickets that are easy to get started with. The ticket
should be ideal for beginners to dive into the code base, indicating
low-hanging fruits [http://www.urbandictionary.com/define.php?term=low-hanging%20fruit].
These tickets generally should fit the following requirements:

	No comprehensive knowledge of the entire code base needed.

	No particular 3rd party library familiarity required.

	Most likely does not involve long term effort.

	No elaborate design decisions involved.

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

General

	
class compact

	

	Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/] and
PEP 257 [https://www.python.org/dev/peps/pep-0257/].

	Try to stick to 79 chars. When this is not enough you may use up to 99 chars.
This is more tolerable for code than for documentation.

	Use double quotes for human readable strings and single quotes for all other strings.

	Private functions and methods are prefixed with a single underscore: _method.

Python 2 and 3 compability

	
class compact

	

	Declare encoding in first line: -*- encoding: utf-8 -*-

	Use absolute_import and unicode_literals from the __future__ package.

	Use six.text_type to cast a unicode string under python 2 and 3.

Code-style

	Readability trumps almost anything. Readable and approachable code carries
it’s weight as a lower contribution-barrier, less bugs and easier
debugging. Having a particular clever, aka dense, alternative is rarely
warranted.

	Favour multiple small specialized (local) functions/methods over big
all-encompassing ones.

	Use well established and maintained high quality 3rd party libraries over own
implementations.

	Use expressive variable names. If you have to trade off verbosity and
expressiveness, go for the later.

	Assigning variables even if they are used only once can be preferable if
expressions become clearer and less dense.

	Any method / function that is not deliberately considered part of the public
API should be considered private. This is to increase the mental threshold
for declaring them public as well as making it easier to the occasional
reader to figure out which parts of the code are relevant to his/her needs
and which are internal details.

	Try to minimize use of return statements with a method/function while using
exceptions wherever suitable. While this may not allways improve readability
it tends to make debugging easier as it provides one central breaking point.

	Methods should have the following order: special (__foo__) > public >
private (_foo`).

Imports

	
class compact

	

	Imports should be grouped in the following order:

	standard library imports

	related third party imports

	local application/library specific imports

	You should put a blank line between each group of imports.

	Always order each group of imports by name.

	You can use isort [https://github.com/timothycrosley/isort] to sort the
imports.

	Remove import statements that are no longer used when you change code.

Documentation

	
class compact

	

	Docstrings should be provided for all public and private classes, methods and
functions. Simple local functions may go without. They should elaborate the
methods signature and use.

	Use google-style [http://www.sphinx-doc.org/en/stable/ext/example_google.html#example-google]
docstrings. Sphinx’s napoleon [http://www.sphinx-doc.org/en/stable/ext/napoleon.html#module-sphinx.ext.napoleon]
extension will make turn this into valid rst.

	use block comments to explain implementation

Committing and commit messages

	
class compact

	

	Commit one change/feature at a time (you can use tig [http://jonas.nitro.dk/tig/]
to select the changes you want to commit).

	Separate bug fixes from feature changes, bugfixes may need to be backported
to the stable branch.

	Maximum line length is 50 characters for the first line and 72 for all
following lines.

	The first line is a short summary, no trailing period.

	Leave a blank line between the summary and the body of the commit message.

	Explain what you did and add all relevant information to the commit message.

	If an issue exists for your feature/bug/task add it to the end of the commit
message.

	Run the test suite before pushing your changes.

	Never commit passwords, *.pyc files, sqlite database files or pdb calls.

Rebasing

	
class compact

	

	try to rebase to keep the commit history linear:

$ git pull --rebase

	If you have uncommitted changes in your working directory use git stash to stash the changes while rebasing:

$ git stash
$ git pull --rebase
$ git stash pop

	Do not rebase already published changesets!

Pull Requests

	
class compact

	

The title of a pull request should contain a summary of the issue it is related
to, as well as the issue id. An example would look like
Advanced report options (#23). This way, a link between the PR and the
issue will be created.

Every pull request has to be approved by at least one other developer before
merging.

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Notes

These notes are just a dumping ground for semanitic information extracted from
legacy hamster while dealing with its codebase that is not documented/obvious.
Also, some basic troubleshooting heuristics and ‘lessons learned’ may be
documented here for now.

	Why all this buisiness with search_names, which are lowercase versions of
proper names? Is it because cases insesitive matching was not available? or
due to performence considerations?

	It looks like the dbus client assume PKs to be > 0 and uses 0 as marker for failure.
Would be great if we can change that on the frontend instead of working around that.

	Whilst we do support networked/distributed storage acces we do not at all can
provide multiple simultanious connections. Our backend uses the fact that an
Object has a PK to decide if it updates or inserts. If any other “client” has
manipulated the data stored under this key between this clients retrieval and
its save call, those changes will simply be overwritten.

	force_flush on SQLAlchemy-factories helped with:

sqlalchemy.exc.IntegrityError: (raised as a result of Query-invoked autoflush;
consider using a session.no_autoflush block if this flush is occurring prematurely)
(sqlite3.IntegrityError) UNIQUE constraint failed: categories.name
[SQL: ‘INSERT INTO categories (id, name) VALUES (?, ?)’] [parameters: ((19, ‘vero’),
(20, ‘officiis’), (21, ‘aliquid’), (22, ‘vero’), (23, ‘dolorum’))]

after we started using factory-instance fixtures ‘alchemy_category’ vs
‘alchemy_category_factory’

	Integrity Error (SQLAlchemy)
If we end up with ‘constraint` or ‘Integrety’ erros although we should not have commited
anything to the db, it may be that one of our unsuspicious queries nearby triggered an
autoflush/commit.
Popular candidates are lookup- and count queries.
One way to get around this using instances of classes not tracked/mapped by SQLAlchemy.

Not supported legacy ‘functionality’

Not now:

	tags

	search_name

	indexing

	ical export

	autocomplete

	resurrect/temporary mechanic

	get facts can inverse search_terms

	trophies

	migration from old database aka run_fixtures.

Opted against:

	__solve_overlaps

	__squeeze_in

	__touch_fact)

Legacy Storage API notes

	get_tag_ids seems to create tags that have been passed if they do not
exist * activities flagged as temporary dont get ressurected
(__add_fact).

	seperate storage.__get_activities is dedicated to autocomplete. we
summerized its usecase under the regular one so far. The difference seems to
be that autocomplete reasonable needs a way to retrieve all activity names,
irrespective of category association. This should be coverable by adding a
categories=False flag to our default method. Worth noting: considers only
non-deleted activities. Activities are returned ordered by their
corresponding facts start time with the ‘latests’ beeing first. Maybe it is
actually cleaner to add a dedicated method like this once we get to
autocomplete.

Dismissed:

	resurrect/temporary for add_fact is about checking for preexisting
activities by using __get_activity_by_name. If True we will consider
‘deleted’ activities and stick this to our new fact.
	We don’t do temporary facts.

	if an activity is created with temporary=True it will be marked as
deleted=True. why not set the attribute directly? Whats the role of a
temporary activity?
	This is only used when creating temporary facts in order to prevent
proper activities beeing created for them. We don’t do temporary facts, so
we can ommit this.

Things we try to improve

	python >=2.7, >=3.4 support

	full unicode support

	full pep8 and 257 complience

	>=95% test coverage

	strict and honest seperation of concerns. We provide just the backend, but
that we do proper. * cleaner, more object oriented pythonic code

	‘one exit point’ strategy for method return values. Reduce the spagettiness.

	modular architecture.

	focus on solid core functionality and only expand features once existing code
meets our standart.

	better project layout including waffle.io, codeship.com and requirements.io

	fully integrated and focused on PyPi distribution. All you need for
production, test or dev comes out of the box with regular python tools.

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hamster-lib 0.11.1 documentation

Credits

Development Lead

	Eric Goller <eric.goller@ninjaduck.solutions>

Contributors

Code taken from ‘legacy hamster’

	tbaugis [https://github.com/tbaugis]:
* parse_time_info from hamster-cli [https://github.com/projecthamster/hamster/blob/master/src/hamster-cli]
* XMLWriter from hamster [https://github.com/projecthamster/hamster/blame/master/src/hamster/reports.py]

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 previous |

 	hamster-lib 0.11.1 documentation

History

0.11.0 (2016-07-06)

	Renamed this package to hamster-lib as it now an offical part of
projecthamster [https://github.com/projecthamster]. It was previously
named and distributed as hamsterlib [https://pypi.python.org/pypi/hamsterlib/0.1.0]

	Add documentation checker pep257 to testsuite.

	Fixed docstrings.

	Removed hamster_lib.objects.Fact.serialized_name.

	Improved test factories

	Made hamster_lib.objects.* hashable.

	Provide consistent and improved __repr__ methods for
hamster_lib.objects classes.

	FactManager._get_all can now return facts completely*or* partially within
the timeframe. As a consequence, we removed
FactManager._timeframe_is_free.

	Added a set of helper function to ease common configuration related tasks.
In particular they make it easy to store a given config at its canonical
file system location.

	Improved ActivityManager.get_all to enable it to return all activities.

0.10.0 (2016-04-20)

	Add ical export facilities. Brand new writer using the icalendar library.

	Add xml export facilities.

	Switch to semantic versioning [http://semver.org]

	Added GPL3 boilerplate

	Provide documentation on packaging and requirements.txt.

	Add support for editorconfig [http://editorconfig.org]

	Introduce fine grained, storage backend dependent config options.

0.0.3 (2016-04-08)

	fact managers save method now enforces new fact_min_delta setting.

	Fixed broken packing in setup.py.

	Storage manager methods now use extensive logging.

	Documentation moved to ‘alabaster’ theme and content extended.

	Remove usage of future.builtins.str.

	Adjusted release make target.

0.0.2 (2016-04-07)

	First release on PyPi

	Improved documentation

	Support for ongoing facts.

	Updated requirements

0.0.1 (2016-04-03)

	First release on github

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	hamster-lib 0.11.1 documentation

Index

 C

C

 	

 	compact (built-in class), [1], [2], [3], [4], [5], [6]

 Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		hamster-lib 0.11.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015-2016, Eric Goller.
 Created using Sphinx 1.4.4.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

